Jumat, 14 Oktober 2011

KOMBINATORIK

  • Persoalan kombinatorik bukan merupakan persoalan yang baru dalam kehidupan nyata. Banyak persoalan kombinatorik yang sederhana telah diselesaiakan dalam masyarakat. Misalkan, saat pemilihan pemain untuk tim sepak bola yang terdiri dari 11 pemain. Apabila ada 20 orang ingin membentuk suatu tim sepak bola, ada berapa kemungkinan komposisi pemain yang dapat terbentuk? Contoh lain adalah dalam menentukan sebuah password panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan password yang dapat dibuat ? Tetapi selain itu para ilmuwan pada berbagai bidang juga kerap menemukan sejumlah persoalan yang harus diselesaikan. Pada Bab ini, kita akan membahas tentang kombinatorik, permutasi dan apa yang terkait dengan itu. Kombinatorik merupakan cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.
  • 3.1 Prinsip Dasar Menghitung Dua prinsip dasar yang digunakan dalam menghitung (counting) yaitu aturan pejumlahan dan aturan perkalian. Prinsip Penjumlahan Jika suatu himpunan A terbagi kedalam himpunan bagian A1, A2, …, An, maka jumlah unsur pada himpunan A akan sama dengan jumlah semua unsur yang ada pada setiap himpunan bagian A1, A2, …, An. Secara tidak langsung, pada prinsip penjumlahan, setiap himpunan bagian A1, A2, …, An tidak saling tumpang tindih (saling lepas). Untuk himpunan yang saling tumpang tindih tidak berlaku lagi prinsip penjumlahan, dan ini harus diselesaikan dengan prinsip inklusi-eksklusi yang akan dibahas kemudian.
  • Contoh 1 : Seorang guru SD di daerah, mengajar murid kelas 4, kelas 5 dan kelas 6. Jika jumlah murid kelas 4 adalah 25 orang dan jumlah murid kelas 5 adalah 27 orang serta jumlah murid kelas 6 adalah 20 orang, maka jumlah murid yang diajar guru tersebut adalah 25 + 27 + 20 = 72 murid.
  • Contoh 2 : Seorang mahasiswa ingin membeli sebuah motor. Ia dihadapkan untuk memilih pada satu jenis dari tiga merk motor, Honda 3 pilihan, Suzuki 2 pilihan, dan Yamaha 2 pilihan. Dengan demikian, mahasiswa tersebut mempunyai mempunyai pilihan sebanyak 3 + 2 + 2 = 7 pilihan. Adiwijaya
  • Prinsip Perkalian Misalkan sebuah prosedur dapat dipecah dalam dua penugasan. Penugasan pertama dapat dilakukan dalam n1 cara, dan tugas kedua dapat dilakukan dalam n2 cara setelah tugas pertama dilakukan. Dengan demikian, dalam mengerjakan prosedur tersebut ada (n1 x n2) cara. Secara tidak langsung, pada prinsip perkalian, bisa terjadi saling tumpang tindih (tidak saling lepas).
  • Contoh 1 : Berapa banyak string dengan panjang tujuh yang mungkin terbentuk dari dua bit (0 dan 1)
  • Jawab : Setiap suku pada string tersebut mempunyai dua cara pemilihan, yaitu 0 atau 1. Dengan demikia, pada pemilihan string dengan panjang tujuah dapat dilakukan dengan : 2 x 2 x 2 x 2 x 2 x 2 x 2 = 27 = 128 cara.
  • Contoh 2 : Seorang guru SD di daerah, mengajar murid kelas 4, kelas 5 dan kelas 6. Misalkan, jumlah murid kelas 4 adalah 25 orang dan jumlah murid kelas 5 adalah 27 orang serta jumlah murid kelas 6 adalah 20 orang. Jika guru tersebut ingin memilih tiga orang murid dari anak didiknya, dimana seorang murid dari setiap kelas, maka guru tersebut mempunyai 25 x 27 x 20 = 13.500 cara dalam memilih susunan tiga murid tersebut.
  • Contoh 3 : Berapa banyak bilangan ganjil antara 1000 dan 9999 (termasuk 1000 dan 9999 itu sendiri) dimana (a) semua angkanya berbeda (b) boleh ada angka yang berulang.
  • Jawab :
  • (a) posisi satuan: 5 kemungkinan angka (yaitu 1, 3, 5, 7 dan 9); posisi ribuan: 8 kemungkinan angka (1 sampai 9 kecuali angka yang telah dipilih) posisi ratusan: 8 kemungkinan angka posisi puluhan: 7 kemungkinan angka maka banyak bilangan ganjil seluruhnya adalah (5)(8)(8)(7) = 2240 buah. (b) posisi satuan: 5 kemungkinan angka (yaitu 1, 3, 5, 7 dan 9); posisi ribuan: 9 kemungkinan angka (1 sampai 9) posisi ratusan: 10 kemungkinan angka (0 sampai 9) posisi puluhan: 10 kemungkinan angka (0 sampai 9)
  • maka banyak bilangan ganjil seluruhnya adalah (5)(9)(10)(10) = 4500
  • Contoh 5 : Password suatu login pada sistem komputer panjangnya lima sampai tujuh karakter. Tiap karakter boleh berupa huruf (huruf besar dan huruf kecil tidak dibedakan) atau angka. Berapa banyak password yang dapat dibuat untuk suatu login ?
  • Jawab : Banyaknya huruf alfabet adalah 26 (A – Z) dan banyak angka adalah 10 (0 – 9), jadi seluruhnya 36 karakter. Untuk password dengan panjang 5 karakter, jumlah kemungkinan password adalah (36)(36)(36)(36)(36) = 365 = 60.466.176 untuk password dengan panjang 6 karakter, jumlah kemungkinan password adalah (36)(36)(36)(36)(36)(36)(36) = 366 = 2.176.782.336 dan untuk password dengan panjang 8 karakter, jumlah kemungkinan password adalah (36)(36)(36)(36)(36)(36)(36)(36) = 367 = 78.364.164.096 Jumlah seluruh password yang mungkin adalah 60.466.176 + 2.176.782.336 + 78.364.164.096 = 80.601.412.608 buah. Jadi, untuk suatu login akan mempunyai 80.601.412.608 buah kemungkinan password.

sumber:jejak jari

RELASI DAN FUNGSI

  • Dalam kehidupan nyata, senantiasa ada hubungan (relasi) antara dua hal atau unsur-unsur dalam suatu kelompok. Misalkan, hubungan antara suatu urusan dengan nomor telepon, antara pegai dengan gajinya, dan lain-lain. Pada bab ini, akan dibahas tentang hubungan antara dua himpunan tak kosong dengan suatu aturan pengkaitan tertentu. Pembahasan tersebut meliputi definisi relasi dan fungsi, operasi beserta sifat-sifatnya.
  • 2.1 Definisi Relasi dan Cara Penyajian
  • Pada bab sebelumnya, telah dibahas tentang Cartesian product, yaitu berupa pasangan terurut yang menyatakan hubungan dari dua himpunan. Semua pasangan terurut yang mungkin merupakan anggota dari himpunan hasil Cartesian product dua buah himpunan. Sebagian dari anggota himpunan tersebut mempunyai hubungan yang khusus (tertentu) antara dua unsur pada pasangan urut tersebut, dengan aturan tertentu. Aturan yang menghubungkan antara dua himpunan dinamakan relasi biner. Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu. Dengan demikian relasi biner R antara himpunan A dan B merupakan himpunan bagian dari cartesian product A × B atau R ⊆ (A × B).
  • Notasi dari suatu relasi biner adalah a R b atau (a, b) ∈ R. Ini berarti bahwa a dihubungankan dengan b oleh R. Untuk menyataan bahwa suatu unsur dalam cartesian product bukan merupakan unsur relasi adalah a R b atau (a, b) ∉ R, yang artinya a tidak dihubungkan oleh b oleh relasi R. Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R.
  • Contoh 2.1 :

Misalkan A = {2, 3, 4} dan B = {2, 4, 8, 9, 15}.
Jika kita definisikan relasi R dari A ke B dengan aturan :
(a, b) ∈ R jika a faktor prima dari b
Jawab :
Seperti yang telah dipelajari sebelumnya, cartesian product A × B adalah :
A × B = {(2, 2), (2, 4), (2, 8), (2, 9), (2, 15), (3, 2), (3, 4), (3, 8),
(3, 9), (3, 15), (4, 2), (4, 4), (4, 8), (4, 9), (4, 15)}
Dengan menggunakan definisi relasi diatas, relasi R dari A ke B yang mengikuti aturan tersebut adalah :
R = {(2, 2), (2, 4), (2, 8), (3, 9), (3, 15) }
Relasi dapat pula terjadi hanya pada sebuah himpunan, yaitu relasi pada A.. Relasi pada himpunan A merupakan himpunan bagian dari cartesian product A × A.
Sekolah Tinggi Teknologi Telkom
20
Matematika Diskrit
Adiwijaya

  • Contoh 2.2 :

Misalkan R adalah relasi pada A = {2, 3, 4, 8, 9} yang didefinisikan oleh :
(x, y) ∈ R jika dan hanya jika x habis dibagi oleh y.
Jawab :
Relasi R pada A yang mengikuti aturan tersebut adalah :
R = {(2, 2), (4, 4), (4, 2), (8, 8), (8, 2), (8, 4), (3, 3), (9, 9), (9, 3)}

  • Cara menyatakan suatu relasi bisa bermacam-macam, antara lain : dengan diagram panah, tabel, matriks, bahkan dengan graph berarah. Berikut ini, akan dibahas satu-persatu cara menyajikankan suatu relasi dengan cara-cara tersebut.
  • Cara menyajikan suatu relasi :
  • a. Penyajian Relasi dengan Diagram Panah

Misalkan A = {2, 3, 4} dan B = {2, 4, 8, 9, 15}.
Jika kita definisikan relasi R dari A ke B dengan aturan :
(a, b) ∈ R jika a faktor prima dari b


  • b. Penyajian Relasi berupa Pasangan Terurut

Contoh relasi pada (a) dapat dinyatakan dalam bentuk pasangan terurut, yaitu :
R = {(2, 2), (2, 4), (2, 8), (3, 9), (3, 15)}

  • c. Penyajian Relasi dengan Tabel

Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan
daerah hasil.


  • d. Penyajian Relasi dengan Matriks

Misalkan R merupakan relasi yang menghubungkan himpunan A = {a1, a2, …, am} dan himpunan B = {b1, b2, …, bn}.

sumber:jejak jari

Kamis, 13 Oktober 2011

H I M P U N A N

  • Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan sebagai himpunan. Pada bab awal ini akan dibahas tentang definisi dan keanggotaan suatu himpunan, operasi himpunan dari beberapa jenis himpunan.
  • 1.1 Definisi dan Keanggotaan Suatu Himpunan Himpunan (set) merupakan sekumpulan objek-objek yang berbeda yang dapat didefinisikan dengan jelas. Objek di dalam himpunan dinamakan unsur atau anggota himpunan. Keanggotaan suatu himpunan dinyatakan oleh notasi ’∈’.

Contoh 1 :
A = {x, y, z}
x ∈ A : x merupakan anggota himpunan A.
w ∉ A : w bukan merupakan anggota himpunan A.

  • Ada beberapa cara dalam menyatakan himpunan, yaitu :
  • a. Mencacahkan anggotanya (enumerasi)

Dengan cara ini, himpunan tersebut dinyatakan dengan menyebutkan semua
anggota himpunannya di dalam suatu kurung kurawal.
Contoh 2 :
- Himpunan empat bilangan ganjil pertama: A = {1, 3, 5, 7}.
- Himpunan lima bilangan prima pertama: B = {2, 3, 5, 7, 11}.
- Himpunan bilangan asli yang kurang dari 50 : C = {1, 2, ..., 50}
- Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}.

  • b. Menggunakan simbol standar (baku)

Suatu himpunan dapat dinyatakan dalam suatu simbol standar (baku) yang telah
diketahui secara umum oleh masyarakat (ilmiah).
Contoh 3 :
N = himpunan bilangan alami (natural) = { 1, 2, ... }
Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... }
Q = himpunan bilangan rasional
R = himpunan bilangan riil
C = himpunan bilangan kompleks
Himpunan yang universal (semesta pembicaraan) dinotasikan dengan U.
Contoh 4 :
Misalkan
Sekolah Tinggi Teknologi Telkom
2
Matematika Diskrit
U = {1, 2, 3, 4, 5}
dan A = {1, 3, 5} merupakan himpunan bagian dari U

  • 3. Menuliskan kriteria (syarat) keanggotaan himpunan

Suatu himpunan dapat dinyatakan dengan cara menuliskan kriteria (syarat)
keanggotaan himpunan tersebut. Himpunan ini dinotasinya sebagai berikut :
{ x ⎥ syarat yang harus dipenuhi oleh x }
Contoh 5 :
(i) A adalah himpunan bilangan asli yang kecil dari 10
A = { x | x ≤ 10 dan x ∈ N } atau A = { x ∈ N | x ≤ 10 }
yang ekivalen dengan A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(ii) M = { x | x adalah mahasiswa yang mengambil kuliah matematika diskrit}
Atau
M = { x adalah mahasiswa | ia mengambil kuliah matematika diskrit}

  • 4. Menggunakan Diagram Venn

Suatu himpunan dapat dinyatakan dengan cara menuliskan anggotanya dalam
suatu gambar (diagram) yang dinamakan diagram venn.

Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan sebagai himpunan. Pada bab awal ini akan dibahas tentang definisi dan keanggotaan suatu himpunan, operasi himpunan dari beberapa jenis himpunan.

  • 1.1 Definisi dan Keanggotaan Suatu Himpunan

Himpunan (set) merupakan sekumpulan objek-objek yang berbeda yang dapat didefinisikan dengan jelas. Objek di dalam himpunan dinamakan unsur atau anggota himpunan. Keanggotaan suatu himpunan dinyatakan oleh notasi ’∈’.
Contoh 1 :
A = {x, y, z}
x ∈ A : x merupakan anggota himpunan A.
w ∉ A : w bukan merupakan anggota himpunan A.

  • Ada beberapa cara dalam menyatakan himpunan, yaitu :
  • a. Mencacahkan anggotanya (enumerasi)

Dengan cara ini, himpunan tersebut dinyatakan dengan menyebutkan semua
anggota himpunannya di dalam suatu kurung kurawal.
Contoh 2 :
- Himpunan empat bilangan ganjil pertama: A = {1, 3, 5, 7}.
- Himpunan lima bilangan prima pertama: B = {2, 3, 5, 7, 11}.
- Himpunan bilangan asli yang kurang dari 50 : C = {1, 2, ..., 50}
- Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}.

  • b. Menggunakan simbol standar (baku)

Suatu himpunan dapat dinyatakan dalam suatu simbol standar (baku) yang telah
diketahui secara umum oleh masyarakat (ilmiah).
Contoh 3 :
N = himpunan bilangan alami (natural) = { 1, 2, ... }
Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... }
Q = himpunan bilangan rasional
R = himpunan bilangan riil
C = himpunan bilangan kompleks
Himpunan yang universal (semesta pembicaraan) dinotasikan dengan U.
Contoh 4 :
Misalkan
Sekolah Tinggi Teknologi Telkom
2
Matematika Diskrit
U = {1, 2, 3, 4, 5}
dan A = {1, 3, 5} merupakan himpunan bagian dari U

  • 3. Menuliskan kriteria (syarat) keanggotaan himpunan

Suatu himpunan dapat dinyatakan dengan cara menuliskan kriteria (syarat)
keanggotaan himpunan tersebut. Himpunan ini dinotasinya sebagai berikut :
{ x ⎥ syarat yang harus dipenuhi oleh x }
Contoh 5 :
(i) A adalah himpunan bilangan asli yang kecil dari 10
A = { x | x ≤ 10 dan x ∈ N } atau A = { x ∈ N | x ≤ 10 }
yang ekivalen dengan A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(ii) M = { x | x adalah mahasiswa yang mengambil kuliah matematika diskrit}
Atau
M = { x adalah mahasiswa | ia mengambil kuliah matematika diskrit}

  • 4. Menggunakan Diagram Venn

Suatu himpunan dapat dinyatakan dengan cara menuliskan anggotanya dalam
suatu gambar (diagram) yang dinamakan diagram venn.

sumber:jejak jari